

Looking Beyond the Hour

Hossein Haeri

ACEEE Energy Efficiency as a Resource Conference November 1, 2017

Outline

Role of EE in Power System Planning

System Benefits of EE

Measuring and valuing capacity contributions

Remembering Arthur Rosenberg

The DSM Virtual Power Plant

Conventional Generation

Demand-Side Management

Energy Efficiency – A Layered Cake

Avoided Externalities
Ancillary Services
T&D System
Capacity

Energy

Capturing Capacity Value of Energy Efficiency

What is needed:

- Hourly system load profile
- Hourly energy efficiency measure "savings" profile
- Avoided hourly energy cost (\$/MWh)
- Avoided capacity costs (\$/kW-year)

What to do:

- Define peak hours (window)
- Determine coincidence factor
- Calculate conservation load factor (CLF)
- Calculate capacity benefits

Where Load Shapes Come From

Defining Peak

High	est peak (1) hour
High	est consecutive hours
Тор	regions of load duration curve (top 5%)
	peak hours (e.g. 3:00 – 8:00) weekdays nuary and February
Loss	of load probability (LOLP)
Hou	rly peak probability distribution

Example: Residential Sector

Example: Residential Sector

How We Define Peak Matters

	Peak Hour	TopTwenty Hours	Peak Period
No Capacity Value	4.8	4.8	4.0
	3.6	5.7	4.1
	0.2	0.0	0.3
	17.0	12.9	11.6
With Capacity	22.2	22.2	19.1
(\$100/kW-Yr.)	16.5	25.8	19.3
	1.0	0.0	1.6
	78.1	59.0	55.3
Percent Change	17%	17%	15%
	13%	20%	15%
	1%	0%	1%
	61%	46%	44%

Conservation Load-Factor

Assume a residential lighting and A/C efficiency program with savings of 10% in lighting and 10% in A/C usage annually:

- 1. Calculate the peak coincidence factor for each program
- 2. Calculate the conservation load factor for each program

Conservation Load-Factor

Conservation load factor:

CLF = Average Annual Hourly Energy Savings (kW)
Peak Load Savings (kW)

Or:

CLF = Annual Energy Savings (kWh)
Peak Load Savings (kW) * 8760

Heating (HP):

_	Annual savings (kWh)	= 457
_	Peak hour savings (kW)	= 0.28
_	CLF	= 0.19

Lighting (LED):

_	Annual savings (kWh)	= 40
_	Peak load savings (kW)	= 0.01
_	CLF	= 0.41

Valuation of Capacity Savings

Recall that:

Or:

Assume capacity value of \$100 per kW per year

- Value of 1 kW of savings from heating = $$100 \div (0.19 * 8760) = 6.0 \text{ cents}$
- Value of 1 kW of savings from lighting = $$100 \div (0.41 * 8760) = 3.0 \text{ cents}$

The lower the CLF, the higher the capacity value from a kWh saved.

ANY QUESTIONS

Hossein Haeri Senior Vice President, Energy Services

hossein.haeri@cadmusgroup.com Office (503) 476-7140

- **f** Facebook.com/CadmusGroup
- @CadmusGroup
- in Linkedin.com/company/the-cadmus-group